
Централизованное тестирование по физике, 2018

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты велосипе- x, м диста от времени его движения. Начальная координата x_0 велосипедиста равна:

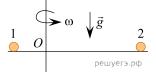
- 1) 14 m 2) 18 m 3) 20 m 4) 24 M 5) 26 M
- 2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.

Момент времени t , с	0,0	2,0	4,0
Координата x , м	-3,0	0,0	9,0

Проекция ускорения a_x автомобиля на ось Ox равна:

1)
$$1.0 \text{ m/c}^2$$

$$2) 1.5 \text{ m/c}^2$$


1)
$$1.0 \text{ m/c}^2$$
 2) 1.5 m/c^2 3) 2.0 m/c^2 4) 2.5 m/c^2

$$4) 2.5 \text{ m/c}^2$$

5)
$$3.0 \text{ m/c}^2$$

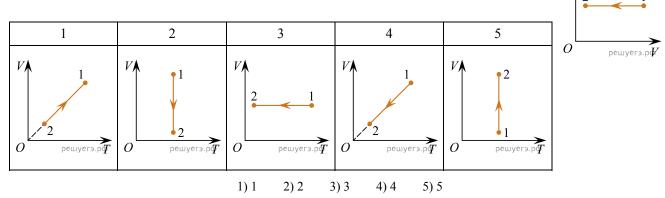
5) 1,5 м

3. Тонкий стержень с закрепленными на его концах небольшими бусинками 1 и 2 равномерно вращается в горизонтальной плоскости вокруг вертикальной оси, проходящей через точку O (см. рис.). Если первая бусинка нахо- 1 дится на расстоянии $r_1 = 25$ см от оси вращения, а модули линейной скорости второй и первой бусинок отличаются в k = 3.0 раза, то длина l стержня равна:

4. Деревянный шар ($\rho_1 = 4.0 \cdot 10^2 \text{ кг/м}^3$) всплывает в воде ($\rho_2 = 1.0 \cdot 10^3 \text{ кг/м}^3$) с постоянной скоростью. Отношение $\frac{F_{\rm C}}{F_{\rm m}}$ модулей силы сопротивления воды и силы тяжести, действующих на шар, равно:

5. Цепь массой m = 2,0 кг и длиной l = 1,0 м, лежащую на гладком горизонтальном столе, поднимают за один конец. Минимальная работа A_{min} по подъему цепи, при котором она перестанет оказывать давление на стол, равна:

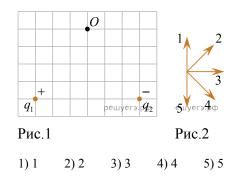
1) 10 Дж 2) 20 Дж 3) 30 Дж 4) 40 Дж 5) 50 Дж


6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой $V=3.0\,$ м/с. Если частота колебаний частиц шнура $v=2.0\,$ Γ ц, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии $l=75\,$ см, равна:

1) $\pi/2$ рад 2) π рад 3) $3\pi/2$ рад 4) 2π рад 5) 4π рад

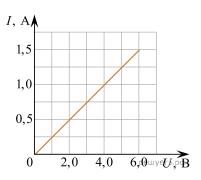
7. В герметично закрытом сосуде находится идеальный газ, давление которого $p=1,0\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $<v_{KB}>=500$ м/с,то плотность ρ газа равна:

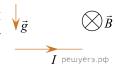
1) $0,40 \text{ kg/m}^3$ 2) $0,60 \text{ kg/m}^3$ 3) $0,75 \text{ kg/m}^3$ 4) $0,83 \text{ kg/m}^3$ 5) $1,2 \text{ kg/m}^3$


8. На рисунке представлен график зависимости давления идеального газа определенной массы от объема. График этого процесса в координатах (V, T) представлен на рисунке, обозначенном цифрой:

9. В герметично закрытом сосуде находится гелий, количество вещества которого v = 10 моль. Если за некоторый промежуток времени температура газа изменилась от t_I = 17 °C до t_2 = 137 °C, то изменение внутренней энергии гелия равно:

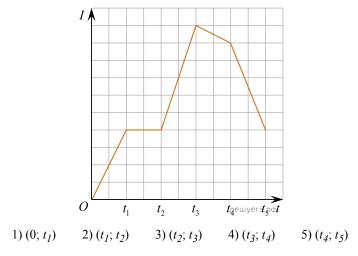
1) –15 кДж 2) –10 кДж 3) 6,6 кДж 4) 10 кДж 5) 15 кДж


10. Точечные заряды, модули которых $|q_I| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:


11. Электрическая емкость плоского воздушного конденсатора C = 12 пФ. Если площадь каждой обкладки уменьшить в $\alpha = 1,5$ раза, то электрическая емкость конденсатора:

1) уменьшится на 4,0 п Φ 2) уменьшится на 8,0 п Φ 3) увеличится на 4,0 п Φ 4) увеличится на 6,0 п Φ 5) увеличится на 8,0 п Φ

12. На рисунке представлен график зависимости силы тока, проходящего через нихромовый ($\rho = 1.0 \cdot 10^{-6} \text{ Ом} \cdot \text{м}$) проводник, от напряжения на нем. Если площадь поперечного сечения проводника $S = 2.0 \text{ мм}^2$, то его длина l равна:



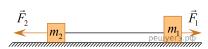
13. Прямолинейный проводник массы m=20 г и длины l=50 см, расположенный горизонтально в однородном магнитном поле, находится в равновесии (см. рис.). Если сила тока, проходящего по проводнику, I=4,0 A, то модуль индукции B магнитного поля равен:

1) 0,10 Тл 2) 0,40 Тл 3) 0,50 Тл 4) 1,0 Тл 5) 1,6 Тл

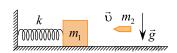
14. На рисунке представлен график зависимости силы тока, проходящего по замкнутому проводящему контуру с постоянной индуктивностью, от времени. Интервал времени, в пределах которого значение модуля ЭДС самоиндукции $|\mathscr{E}|$ максимально:

15. Расстояние от мнимого изображения действительного предмета, полученного с помощью тонкой собирающей линзы, до ее главной плоскости в $\alpha = 3$ раза больше фокусного расстояния. Линейное (поперечное) увеличение Γ линзы равно:

16. Дифракционную решетку с периодом $d = 2,0\cdot 10^{-5}$ м освещают монохроматическим светом, падающим по нормали. Если расстояние между главными максимумами первого порядка на экране, расположенном на расстоянии L=1,6 м от решетки, l=80 мм, то длина световой волны λ равна:

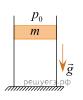

1)
$$0,42 \text{ MKM}$$
 2) $0,46 \text{ MKM}$ 3) $0,50 \text{ MKM}$ 4) $0,54 \text{ MKM}$ 5) $0,62 \text{ MKM}$

17. Фотоэлектроны, выбиваемые с поверхности металла светом с длиной волны $\lambda=330$ нм, полностью задерживаются, когда разность потенциалов между электродами фотоэлемента $U_3=1,76$ В. Длина волны $\lambda_{\rm K}$, соответствующая красной границе фотоэффекта, равна:


18. Заряд $q = 4.32 \cdot 10^{-18}$ Кл имеет ядро атома:

54,938	55,847	58,933	58,70	63,546	65,39	69,72	72,59
25 <i>Мп</i>	26 <i>Fe</i>	27 <i>Со</i>	28 <i>Ni</i>	29 <i>Си</i>	30 <i>Zn</i>	31 <i>Ga</i>	32 <i>Ge</i>
марганец	железо	кобальт	никель	медь	цинк	галий	германий
97,91	101,07	102,906	106,4	107,868	112,41	114,82	118,71
43 <i>Тс</i>	44 <i>Ru</i>	45 <i>Rh</i>	46 <i>Рd</i>	47 <i>Ag</i>	48 <i>Сd</i>	49 <i>In</i>	50 <i>Sn</i>
технеций	рутений	родий	палладий	серебро	кадмий	индий	родово _{рф}
553.5 565 5037 50.0 655							

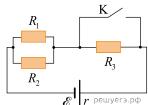
- 1) ${}^{55}_{25}$ Mn 2) ${}^{56}_{26}$ Fe 3) ${}^{59}_{28}$ Ni 4) ${}^{59}_{27}$ Co 5) ${}^{65}_{30}$ Zn
- **19.** Лифт начал подниматься с ускорением, модуль которого a=1,2 м/с². Когда модуль скорости движения достиг V=2,0 м/с, с потолка кабины лифта оторвался болт. Если высота кабины h=2,4 м, то модуль перемещения Δr болта относительно поверхности Земли за время его движения в лифте равен ... **см**. Ответ округлите до целых.
- **20.** Два груза массы $m_1 = 0.4$ кг и $m_2 = 0.2$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$, где A



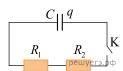
- = 1,5 H/c. Если модуль сил упругости нити в момент разрыва $F_{\rm ynp}$ = 20 H, то нить разорвется в момент времени t от начала движения, равный ... ${\bf c}$.
- **21.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=10 м. Если коэффициент трения $\mu=0,50$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- **22.** В брусок, лежавший на гладкой горизонтальной поверхности и прикрепленный к вертикальному упору легкой пружиной жесткости k=1,2 кН/м, попадает и застревает в нем пуля массы $m_2=0,01$ кг, летевшая со скоростью, модуль которой $\upsilon=56$ м/с, направленной вдоль оси

пружины (см. рис.). Если максимальное значение силы, которой пружина действует на упор в процессе возникших колебаний, $F_{\text{max}} = 13.7 \text{ H}$, то масса m_1 бруска равна ... кг. Ответ округлите до целого.

23. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=4,00 кг, а площадь поперечного сечения S=20,0 см 2 , содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100$ кПа. Если начальная температура газа и объем $T_1=270$ К и $V_1=3,00$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T=180$ К, то работа T=1,000, совершенная силой давления газа, равна ... Дж.


24. Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r=10 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда первого шарика до соприкосновения $|q_1|=1$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F=3,6 мкH, то модуль заряда $|q_2|$ второго шарика до соприкосновения равен ... **нКл**.

25. Сосуд, содержащий парафин (c = 3,20 кДж/(кг·К), $\lambda = 150$ кДж/кг) массы m = 400 г, поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда парафин полностью расплавился. В таблице представлены результаты измерений температуры парафина.


Температура <i>T</i> , °C	24,0	34,0	44,0	54,0	54,0		54,0
Время t, с	0,00	25,0	50,0	75,0	100	:	192,3

Если коэффициент полезного действия электроплитки $\eta = 64,0$ %, то ее мощность P равна ... **Вт**.

26. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=4,00~{\rm CM}$, $R_3=2,00~{\rm CM}$. По цепи в течение промежутка времени $t=20,0~{\rm C}$ проходит электрический ток. Если ЭДС источника тока $\epsilon=12,0~{\rm B}$, а его внутреннее сопротивление $r=2,00~{\rm CM}$, то полезная работа $A_{\rm полезн.}$ тока на внешнем участке цепи при разомкнутом ключе K равна ... Дж.

- **27.** Квадратная проволочная рамка с длиной стороны a=4.0 см помещена в однородное магнитное поле, модуль индукции которого B=450 мТл, так, что линии индукции перпендикулярны плоскости рамки. Если сопротивление проволоки рамки R=30 мОм, то при исчезновении поля через поперечное сечение проволоки рамки пройдет заряд, модуль |q| которого равен ... **мКл**.
- **28.** В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора и катушки с индуктивностью L=20 мГн, происходят свободные электромагнитные колебания с периодом T. Если амплитудное значение силы тока в контуре $I_{\rm max}=1$ A, то энергия $W_{\rm L}$ магнитного поля катушки в момент времени t=T/8 от момента начала колебаний (подключения катушки к заряженному конденсатору) равна ... мДж.
- **29.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n = 1,50, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, S = 740 см², то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **30.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1 = 1$ МОм и $R_2 = 2$ МОм. Если электрическая емкость конденсатора C = 1 нФ, а его заряд q = 6 мкКл, то количество теплоты Q_1 которое выделится в резисторе R_1 при полной разрядке конденсатора после замыкания ключа K, равно ... мДж.

